Mechanistic insights into type III restriction enzymes

15Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod2 and a heterotetrameric Res 2Mod2 complex. The Mod subunit in M2 or R 2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3DDNA looping have been proposed.

Cite

CITATION STYLE

APA

Raghavendra, N. K., Bheemanaik, S., & Rao, D. N. (2012). Mechanistic insights into type III restriction enzymes. Frontiers in Bioscience, 17(3), 1094–1107. https://doi.org/10.2741/3975

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free