In this paper, a new method for controlling a quantum ensemble that its members have uncertainties in Hamiltonian parameters is designed. Based on combining the sampling-based learning control (SLC) and a new quantum genetic algorithm (QGA) method, the control of an ensemble of a two-level quantum system with Hamiltonian uncertainties is achieved. To simultaneously transfer the ensemble members to a desired state, an SLC algorithm is designed. For reducing the transfer error significantly, an optimization problem is defined. Considering the advantages of QGA and the nature of the problem, the optimization problem by using the QGA method is solved. For this purpose, N samples through sampling of the uncertainty parameters via uniform distribution are generated and an augmented system is also created. By using QGA in the training step, the best control signal is obtained. To test the performance and validation of the method, the obtained control is implemented for some random selected samples. A couple of examples are simulated for investigating the proposed model. The results of the simulations indicate the effectiveness and the advantages of the proposed method.
CITATION STYLE
Arjmandzadeh, A., & Yarahmadi, M. (2017). Quantum genetic learning control of quantum ensembles with hamiltonian uncertainties. Entropy, 19(8). https://doi.org/10.3390/e19080376
Mendeley helps you to discover research relevant for your work.