Spray mist reduction by means of a high-volume evacuation system—Results of an experimental study

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Objectives High-speed tooth preparation requires effective cooling to avoid thermal damage, which generates spray mist, which is a mixture of an aerosol, droplets and particles of different sizes. The aim of this experimental study was to analyze the efficacy of spray mist reduction with an intraoral high-volume evacuation system (HVE) during simulated high-speed tooth preparation for suboptimal versus optimal suction positions of 16 mm sized cannulas and different flow rates of the HVE. Material and methods In a manikin head, the upper first premolar was prepared with a dental turbine, and generated particles of 5–50 microns were analyzed fifty millimeters above the mouth opening with the shadow imaging technique (frame: 6.6×5.3×1.1 mm). This setup was chosen to generate a reproducible spray mist in a vertical direction towards an imaginary operator head (worst case scenario). The flow rate (FR) of the HVE was categorized into five levels (≤120 l/min up to 330 l/min). The number of particles per second (NP; p/s) was counted, and the mass volume flow of particles per second (MVF; μg/s*cm3) was calculated for 10 sec. Statistical tests were nonparametric and two-sided (p≤0.05). Results With increasing flow rate, the NP/MVF values decreased significantly (eta: 0.671/0.678; p≤0.001). Using a suboptimally positioned cannula with an FR≤160 l/min, significantly higher NP values (mean±SD) of 731.67±54.24 p/s (p≤0.019) and an MVF of 3.72±0.42 μg/ s*cm3 (p≤0.010) were measured compared to those of the optimal cannula position and FR≤300 l/min (NP/MVF: 0/0). No significant difference in NP and MVF was measurable between FR≥250 l/min and FR>300 l/min (p = 0.652, p = 0.664). Conclusion Within the limitations of the current experimental study, intraoral high-flow rate suction with ≥300 l/min with an HVE effectively reduced 5–50 μm sized particles of the spray mist induced by high-speed tooth preparation with a dental turbine.

Cite

CITATION STYLE

APA

Koch, M., & Graetz, C. (2021). Spray mist reduction by means of a high-volume evacuation system—Results of an experimental study. PLoS ONE, 16(9 September). https://doi.org/10.1371/journal.pone.0257137

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free