Cortical surround interactions and perceptual salience via natural scene statistics

66Citations
Citations of this article
179Readers
Mendeley users who have this article in their library.

Abstract

Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience. © 2012 Coen-Cagli et al.

Cite

CITATION STYLE

APA

Coen-Cagli, R., Dayan, P., & Schwartz, O. (2012). Cortical surround interactions and perceptual salience via natural scene statistics. PLoS Computational Biology, 8(3). https://doi.org/10.1371/journal.pcbi.1002405

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free