This review focuses upon the past 8 years of research on hyperthermic effects on behavior. Heat stress and heat stoke become severe conditions when body temperatures exceed 40°C as this can lead to delirium, convulsions, coma, and death. The animal literature indicates that hyperthermia can increase glutamatergic and decrease GABAergic neurotransmission. Interestingly, μ-opiate receptor antagonists can attenuate the morphological and biochemical changes in brain, as well as, ameliorate some behavioral deficits induced by heart stress. In humans, heat stress can produce detrimental effects on motor and cognitive performance. Since most cognitive tasks require a motor response, some cognitive deficiencies may be attributed to decreased motor performance. Although hyperthermia may exert more deleterious effects on complex than simple cognitive tasks, systematic studies are needed to examine the effects of different levels and durations of hyperthermia (irrespective of dehydration) on cognition. Additionally, body temperatures should be carefully monitored where controls are run for baseline or brief exposures to a hyperthermic environment. Acute radiofrequency exposure can disrupt behavior when body temperatures increase >1°C with whole body SAR between 3.2-8.4 W/kg and time-averaged power densities at 8-140 mW/cm2. Effects of lower levels of radiation are conflicting and some experiments fail to replicate even with the original investigators. This suggests either that brief exposure to the radiation is at a threshold where some individuals are affected while others are not, or that these levels are innocuous. Nevertheless, thermal changes appear to account for almost all of the behavioral effects reported. © 2011 Informa UK Ltd All rights reserved.
CITATION STYLE
Wetsel, W. C. (2011, June). Hyperthermic effects on behavior. International Journal of Hyperthermia. https://doi.org/10.3109/02656736.2010.550905
Mendeley helps you to discover research relevant for your work.