The trade-off between spatial and temporal resolutions has led to the disaggregation of remotely sensed land surface temperatures (LSTs) for better applications. The window used for regression is one of the primary factors affecting the disaggregation accuracy. Global window strategies (GWSs) and local window strategies (LWSs) have been widely used and discussed, while object-based window strategies (OWSs) have rarely been considered. Therefore, this study presents an OWS based on a segmentation algorithm and provides a basis for selecting an optimal window size balancing both accuracy and efficiency. The OWS is tested with Landsat 8 data and simulated data via the “aggregation-then-disaggregation” strategy, and compared with the GWS and LWS. Results tested with the Landsat 8 data indicate that the proposed OWS can accurately and efficiently generate high-resolution LSTs. In comparison to the GWS, the OWS improves the mean accuracy by 0.19 K at different downscaling ratios, in particular by 0.30 K over urban areas; compared with the LWS, the OWS performs better in most cases but performs slightly worse due to the increasing downscaling ratio in some cases. Results tested with the simulated data indicate that the OWS is always superior to both GWS and LWS regardless of the downscaling ratios, and the OWS improves the mean accuracy by 0.44 K and 0.19 K in comparison to the GWS and LWS, respectively. These findings suggest the potential ability of the OWS to generate super-high-resolution LSTs over heterogeneous regions when the pixels within the object-based windows derived via segmentation algorithms are more homogenous.
CITATION STYLE
Xia, H., Chen, Y., Quan, J., & Li, J. (2019). Object-based window strategy in thermal sharpening. Remote Sensing, 11(6). https://doi.org/10.3390/RS11060634
Mendeley helps you to discover research relevant for your work.