Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning

629Citations
Citations of this article
418Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Air filtration has become an essential need for passive pollution control. However, most of the commercial air purifiers rely on dense fibrous filters, which have good particulate matter (PM) removal capability but poor biocidal effect. Here we present the photocatalytic bactericidal properties of a series of metal-organic frameworks (MOFs) and their potentials in air pollution control and personal protection. Specifically, a zinc-imidazolate MOF (ZIF-8) exhibits almost complete inactivation of Escherichia coli (E. coli) (>99.9999% inactivation efficiency) in saline within 2 h of simulated solar irradiation. Mechanistic studies indicate that photoelectrons trapped at Zn+ centers within ZIF-8 via ligand to metal charge transfer (LMCT) are responsible for oxygen-reduction related reactive oxygen species (ROS) production, which is the dominant disinfection mechanism. Air filters fabricated from ZIF-8 show remarkable performance for integrated pollution control, with >99.99% photocatalytic killing efficiency against airborne bacteria in 30 min and 97% PM removal. This work may shed light on designing new porous solids with photocatalytic antibiotic capability for public health protection.

Cite

CITATION STYLE

APA

Li, P., Li, J., Feng, X., Li, J., Hao, Y., Zhang, J., … Wang, B. (2019). Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10218-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free