Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and In Vitro Assessment

  • Abbasi S
  • Paul A
  • Shao W
  • et al.
N/ACitations
Citations of this article
130Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most anticancer drugs are greatly limited by the serious side effects that they cause. Doxorubicin (DOX) is an antineoplastic agent, commonly used against breast cancer. However, it may lead to irreversible cardiotoxicity, which could even result in congestive heart failure. In order to avoid these harmful side effects to the patients and to improve the therapeutic efficacy of doxorubicin, we developed DOX-loaded polyethylenimine- (PEI-) enhanced human serum albumin (HSA) nanoparticles. The formed nanoparticles were ~137 nm in size with a surface zeta potential of ~+15 mV, prepared using 20 μ g of PEI added per mg of HSA. Cytotoxicity was not observed with empty PEI-enhanced HSA nanoparticles, formed with low-molecular weight (25 kDa) PEI, indicating biocompatibility and safety of the nanoparticle formulation. Under optimized transfection conditions, approximately 80% of cells were transfected with HSA nanoparticles containing tetramethylrhodamine-conjugated bovine serum albumin. Conclusively, PEI-enhanced HSA nanoparticles show potential for developing into an effective carrier for anticancer drugs.

Cite

CITATION STYLE

APA

Abbasi, S., Paul, A., Shao, W., & Prakash, S. (2012). Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and In Vitro Assessment. Journal of Drug Delivery, 2012, 1–8. https://doi.org/10.1155/2012/686108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free