Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of β-lactamase in the K. pneumoniae isolates played a major role in the resistance to β-lactam agents. Most isolates (96%) possessed blaSHV-1. Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) β-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products. Copyright ©, International Association for Food Protection.
CITATION STYLE
Kim, S. H., Wei, C. I., Tzou, Y. M., & Haejung, A. N. (2005). Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. Journal of Food Protection, 68(10), 2022–2029. https://doi.org/10.4315/0362-028X-68.10.2022
Mendeley helps you to discover research relevant for your work.