The widespread use of silver nanoparticles (AgN) in the articles of common use justifies the need to investigate their effects on the human body. Nanosilver toxicity of highly purified, stable, and well-characterized Ag sol toward human immune cells at various differentiation stages has been studied. Human promyelocytic leukemia cells (HL-60) were differentiated to granulocytes using dimethyl sulfoxide and to macrophage-like cells by phorbol ester. Human monocytic cells (U-937) were differentiated to monocytes and macrophages by phorbol ester. In the presence of AgN, different changes of their survival time were observed depending on cell differentiation. Differentiated cells showed a significantly higher resistance than the non-differentiated cells, depending on the contact time and AgN concentration. In the presence of AgN at concentration of 25 mg/l, fraction of non-differentiated cells alive after 24 h was equal to 45 %; for granulocytes this number increased to 75 % and for macrophages to 65 %. The presence of AgN increases the levels of intracellular antioxidant —glutathione and of nitric oxide — one of inflammation mediators. By checking the effect caused by effluent obtained from AgN sol purification resulting at AgN sol purification, it was proved that cytotoxity should be attributed to the action of silver particles themselves.
CITATION STYLE
Barbasz, A., Oćwieja, M., & Barbasz, J. (2015). Cytotoxic Activity of Highly Purified Silver Nanoparticles Sol Against Cells of Human Immune System. Applied Biochemistry and Biotechnology, 176(3), 817–834. https://doi.org/10.1007/s12010-015-1613-3
Mendeley helps you to discover research relevant for your work.