The physiological role of adrenomedullin (ADM) in volume and pressure homeostasis remains unclear. Accordingly, we assessed possible modulatory actions of ADM infusions on the neurohumoral response to acute volume loading with dextran in normal conscious sheep. Dextran (15 ml/kg), given with concurrent ADM (5.5 pmol/kg per min - raising plasma ADM from below detection to approximately 10 pmol/l) or vehicle control infusions, induced matched significant (P<0.001 by ANOVA) falls in hematocrit (27-30%) during both ADM and control and similar increases in right atrial pressure (approximately 10 mmHg). Compared with control, both systemic (P=0.033) and pulmonary (P=0.005) arterial pressure and peripheral resistance (P=0.004) were reduced during ADM but were raised post-infusion. The dextran-induced increase in cardiac output was augmented by ADM (P=0.048). Dextran-induced increases in plasma atrial natriuretic peptide (ANP; P=0.008), brain natriuretic peptide (BNP; P=NS) and cyclic guanosine monophosphate (cGMP; P=0.003) were augmented post-ADM infusions. The dextran-induced fall in plasma renin activity (PRA) was attenuated by ADM (P=0.039) whereas plasma aldosterone levels were unaltered. ADM augmented the increase in urinary volume during the second 2-h clearance period post-dextran. Our data indicate that ADM modifies the hemodynamic and hormonal response to an acute volume challenge, enhances natriuretic peptide secretion and reduces systemic vascular resistance. These results provide further evidence that ADM plays a physiological role in volume and pressure homeostasis.
CITATION STYLE
Charles, C. J., Nicholls, M. G., Rademaker, M. T., & Richards, A. M. (2002). Adrenomedullin modulates the neurohumoral response to acute volume loading in normal conscious sheep. Journal of Endocrinology. https://doi.org/10.1677/joe.0.1730123
Mendeley helps you to discover research relevant for your work.