Cortical structure predicts the pattern of corticocortical connections

300Citations
Citations of this article
287Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cortical areas are linked through pathways which originate and terminate in specific layers. The factors underlying which layers are involved in specific connections are not well understood. Here we tested whether cortical structure can predict the pattern as well as the relative distribution of projection neurons and axonal terminals in cortical layers, studied with retrograde and anterograde tracers. We used the prefrontal cortices in the rhesus monkey as a model system because their laminar organization varies systematically, ranging from areas that have only three identifiable layers, to those that have six layers. We rated each prefrontal area based on the number and definition of its cortical layers (level 1, lowest; level 5, highest). The structural model accurately predicted the laminar pattern of connections in ~80% of the cases. Thus, projection neurons from a higher- level cortex originated mostly in the upper layers and their axons terminated predominantly in the deep layers (4-6) of a lower-level cortex. Conversely, most projection neurons from a lower-level area originated in the deep layers and their axons terminated predominantly in the upper layers (1-3) of a higher-level area. In addition, the structural model accurately predicted that the proportion of projection neurons or axonal terminals in the upper to the deep layers would vary as a function of the number of levels between the connected cortices. The power of this structural model lies in its potential to predict patterns of connections in the human cortex, where invasive procedures are precluded.

Cite

CITATION STYLE

APA

Barbas, H., & Rempel-Clower, N. (1997). Cortical structure predicts the pattern of corticocortical connections. Cerebral Cortex, 7(7), 635–646. https://doi.org/10.1093/cercor/7.7.635

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free