Estimating the severity of visual field damage from retinal nerve fiber layer thickness measurements with artificial intelligence

9Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Purpose: The purpose of this study was to assess the accuracy of artificial neural networks (ANN) in estimating the severity of mean deviation (MD) from peripapillary retinal nerve fiber layer (RNFL) thickness measurements derived from optical coherence tomography (OCT). Methods: Models were trained using 1796 pairs of visual field and OCT measurements from 1796 eyes to estimate visual field MD from RNFL data. Multivariable linear regres-sion, random forest regressor, support vector regressor, and 1D convolutional neural network (CNN) models with sectoral RNFL thickness measurements were examined. Three independent subsets consisting of 698, 256, and 691 pairs of visual field and OCT measurements were used to validate the models. Estimation errors were visualized to assess model performance subjectively. Mean absolute error (MAE), root mean square error (RMSE), median absolute error, Pearson correlation, and R-squared metrics were used to assess model performance objectively. Results: The MAE and RMSE of the ANN model based on the testing dataset were 4.0 dB (95% confidence interval = 3.8–4.2) and 5.2 dB (95% confidence interval = 5.1–5.4), respectively. The ranges of MAE and RMSE of the ANN model on independent datasets were 3.3–5.9 dB and 4.4–8.4 dB, respectively. Conclusions: The proposed ANN model estimated MD from RNFL measurements better than multivariable linear regression model, random forest, support vector regressor, and 1-D CNN models. The model was generalizable to independent data from different centers and varying races. Translational Relevance: Successful development of ANN models may assist clinicians in assessing visual function in glaucoma based on objective OCT measures with less dependence on subjective visual field tests.

Cite

CITATION STYLE

APA

Huang, X., Sun, J., Majoor, J., Vermeer, K. A., Lemij, H., Elze, T., … Yousefi, S. (2021). Estimating the severity of visual field damage from retinal nerve fiber layer thickness measurements with artificial intelligence. Translational Vision Science and Technology, 10(9). https://doi.org/10.1167/tvst.10.9.16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free