The mortality of organisms exposed to toxicants has been attributed to either stochastic processes or individual tolerance (IT), leading to the stochastic death (SD) and IT models. While the IT model follows the principles of natural selection, the relevance of the SD model has been debated. To clarify why the idea of stochastic mortality has found its way into ecotoxicology, we investigated the mortality of Poecilus cupreus (Linnaeus, 1758) beetles from pesticide-treated oilseed rape (OSR) fields and unsprayed meadows, subjected to repeated insecticide treatments. We analyzed the mortality with the Kaplan-Meier estimator and general unified threshold model for survival (GUTS), which integrates SD and IT assumptions. The beetles were exposed three times, ca. monthly, to the same dose of Proteus 110 OD insecticide containing thiacloprid and deltamethrin, commonly used in the OSR fields. Kaplan-Meier analysis showed that the mortality of beetles from meadows was much higher after the first treatment than after the next two, indicating the IT model. Beetles from the OSR displayed approximately constant mortality after the first and second treatments, consistent with the SD model. GUTS analysis did not conclusively identify the better model, with the IT being marginally better for beetles from meadows and the SD better for beetles from OSR fields.
CITATION STYLE
Sowa, G., Bednarska, A. J., & Laskowski, R. (2024). Mortality Pattern of Poecilus cupreus Beetles after Repeated Topical Exposure to Insecticide─Stochastic Death or Individual Tolerance? Environmental Science and Technology, 58(4), 1854–1864. https://doi.org/10.1021/acs.est.3c08031
Mendeley helps you to discover research relevant for your work.