Effect of ambient temperature on human pain and temperature perception

85Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

Background: Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous β-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Methods: Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50°C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15°C (cool), 25°C (neutral), and 35°C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Results: Mean skin temperature was altered by ambient temperature (cool room: 30.1°C; neutral room: 33.4°C; warm room: 34.5°C; P < 0.0001). Ambient temperature affected both heat (44-50°C) and cold (25-0°C) perception (P < 0.01). Stimulus intensity ratings tended to be lower in the cool than in the neutral environment (P < 0.07) but were not different between the neutral and warm environments. Unpleasantness ratings revealed that cold stimuli were more unpleasant than hot stimuli in the cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40°C) or mechanical stimuli. Conclusions: These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Aδ primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Aδ cutaneous cold fibers.

Author supplied keywords

Cite

CITATION STYLE

APA

Strigo, I. A., Carli, F., & Bushnell, M. C. (2000). Effect of ambient temperature on human pain and temperature perception. Anesthesiology, 92(3), 699–707. https://doi.org/10.1097/00000542-200003000-00014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free