Numerical Simulation of Deformations of Basalt Roving

5Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the modern world, there is a growing need for composite materials that satisfy such rigid, often conflicting requirements as minimizing the weight of structures, maximizing strength, rigidity, reliability, durability when working under severe loading conditions, low temperatures and in corrosive environments. Compared to traditional materials, fiber-based composites (glass-, basalt-) have a number of advantages - corrosion resistance, chemical inertness, low thermal conductivity, high specific mechanical characteristics, low weight, durability, low installation costs. Basalt fibers are much cheaper than S-glass fibers. The Republic of Sakha (Yakutia) is a region with extreme climatic conditions, rich in mineral resources, but remote from industrial centers of the Russian Federation. Therefore, special requirements are imposed on building structural materials used in the Far North conditions, such as frost resistance, increased toughness, wear resistance, etc. A significant problem in the construction in permafrost conditions and repeated freeze/thaw cycles is the provision of durability of reinforced foundation structures and piles, working in conditions that promote the acceleration of corrosion of steel reinforcement and concrete. In this work we consider the elasticity equations, which describe stress-strain basalt roving. For numerical solution we approximate our system using finite elements method. As the model problem we consider deformations of basalt roving subjected to three point bending test to define dependence of the strength of the basalt roving on interlacing of fibers. The results of numerical simulation of the 3D problem and comparison with experimental data are presented.

Cite

CITATION STYLE

APA

Sivtseva, A. V., & Sivtsev, P. V. (2019). Numerical Simulation of Deformations of Basalt Roving. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11386 LNCS, pp. 501–508). Springer Verlag. https://doi.org/10.1007/978-3-030-11539-5_58

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free