Optimal parallel shortest paths in small treewidth digraphs

5Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give parallel algorithms for the EREW PRAM model of computation that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in 0(a(n)) time using a single processor, after a preprocessing of O(log2 n) time and 0(n) work, where a(n) is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanar graphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallel algorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in O(log n) time using O(n##^) work, for any constant 0 < β < 1. Moreover, we give an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in O(log2 n) time using 0(n) work.

Cite

CITATION STYLE

APA

Chaudhuri, S., & Zaroliagis, C. D. (1995). Optimal parallel shortest paths in small treewidth digraphs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 979, pp. 31–45). Springer Verlag. https://doi.org/10.1007/3-540-60313-1_132

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free