The product of the firA (ssc) gene is essential for growth and for the integrity of the outer membrane of Escherichia coli and Salmonella typhimurium. Recently, Kelly and coworkers (T. M. Kelly, S. A. Stachula, C. R. H. Raetz, and M. S. Anderson, J. Biol. Chem., 268:19866-19874, 1993) identified firA as the gene encoding UDP-3-O-(R-3-hydroxymyristoyl)- glucosamine N-acyltransferase, the third step in lipid A biosynthesis. We studied the effects of six different mutations in firA on lipopolysaccharide synthesis. All of the firA mutants of both E. coli and S. typhimurium examined had a decreased lipopolysaccharide synthesis rate. E. coli and S. typhimurium strains defective in firA produced a lipid A that contains a seventh fatty acid, a hexadecanoic acid, when grown at the nonpermissive temperature. Analysis of the enzymatic activity of other enzymes involved in lipid A biosynthesis revealed that the firA mutations pleiotropically affect lipopolysaccharide biosynthesis. In addition to that of UDP-3-O-(R-3- hydroxymyristoyl)-glucosamine N-acyltransferase, the enzymatic activity of the lipid A 4' kinase (the sixth step of lipid A biosynthesis) was decreased in strains with each of the firA mutations examined. However, overproduction of FirA was not accompanied by overexpression of the lipid A 4' kinase.
CITATION STYLE
Roy, A. M., & Coleman, J. (1994). Mutations in firA, encoding the second acyltransferase in lipopolysaccharide biosynthesis, affect multiple steps in lipopolysaccharide biosynthesis. Journal of Bacteriology, 176(6), 1639–1646. https://doi.org/10.1128/jb.176.6.1639-1646.1994
Mendeley helps you to discover research relevant for your work.