Druggable exosites of the human kino-pocketome

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Small molecules binding at any of the multiple regulatory sites on the molecular surface of a protein kinase may stabilize or disrupt the corresponding interaction, leading to consequent modulation of the kinase cellular activity. As such, each of these sites represents a potential drug target. Even targeting sites outside the immediate ATP site, the so-called exosites, may cause desirable biological effects through an allosteric mechanism. Targeting exosites can alleviate adverse effects and toxicity that is common when ATP-site compounds bind promiscuously to many other types of kinases. In this study we have identified, catalogued, and annotated all potentially druggable exosites on the protein kinase domains within the existing structural human kinome. We then priority-ranked these exosites by those most amenable to drug design. In order to identify pockets that are either consistent across the kinome, or unique and specific to a particular structure, we have also implemented a normalized representation of all pockets, and displayed these graphically. Finally, we have built a database and designed a web-based interface for users interested in accessing the 3-dimensional representations of these pockets. We envision this information will assist drug discovery efforts searching for untargeted binding pockets in the human kinome.

Cite

CITATION STYLE

APA

Nicola, G., Kufareva, I., Ilatovskiy, A. V., & Abagyan, R. (2020). Druggable exosites of the human kino-pocketome. Journal of Computer-Aided Molecular Design, 34(3), 219–230. https://doi.org/10.1007/s10822-019-00276-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free