This paper presents a three-level oligopoly power producer's capacity investment game model, whose first level considers optimal regulation policy, and second-level models producer's capacity investment strategy based on the analysis of power producer's equilibrium biding strategy with capacity and price cap constraints at third level. We solve the model with backward induction and simulate the symmetric case. Precisely, we examine the effect of the number of oligopoly power producers, price cap, and contracts for differences (CFDs) on the unit load and power sale price and explore the optimal investment policy based on the maximization of discounted social welfare. For the proportion of power in CFDs being very big and power supply being relatively nervous in Chinese power market, we discuss the effect of power capacity investment subsidies and CFDs power price on power supply and demand, whose results indicate that reducing the proportion of CFDs' power in the power producer's access grid power is an effective way to alleviate the tension in power supply and demand, and the current renewable energy policy can neither necessarily ease the tension condition of power supply nor can it necessarily promote the construction of renewable power generation units. © 2013 Xinhua Zhang et al.
CITATION STYLE
Zhang, X., Huang, H., & Xia, X. (2013). Oligopoly power producer’s capacity investment model with contracts for differences. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/654124
Mendeley helps you to discover research relevant for your work.