Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (PN) and stomatal conductance (gs) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum PN and gs, although PN was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (Ψ1) during the drought period (-3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as Ψ1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of Ψ1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex, and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus.
CITATION STYLE
Bombelli, A., & Gratani, L. (2003). Interspecific differences of leaf gas exchange and water relations of three evergreen Mediterranean shrub species. Photosynthetica, 41(4), 619–625. https://doi.org/10.1023/B:PHOT.0000027529.82395.86
Mendeley helps you to discover research relevant for your work.