UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of Recent Learning Algorithms

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent technological advancements in space, air, and ground components have made possible a new network paradigm called 'space-air-ground integrated network' (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, real-world deployment of a SAGIN becomes a significant barrier to realizing such SAGINs. UAVs are expected to meet key performance requirements with limited maneuverability and resources with space and terrestrial components. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. This paper provides an essential review and analysis of recent learning algorithms in a UAV-assisted SAGIN. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit, particle swarm optimization, and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, applicable to various missions on a SAGIN. We consider real-world configurations and the 2-dimensional (2D) and 3-dimensional (3D) UAV trajectories to reflect deployment cases. Our simulations suggest the 3D satisfaction-based learning algorithm outperforms other approaches in most cases. With open challenges discussed at the end, we aim to provide design and deployment guidelines for UAV-assisted SAGINs.

Cite

CITATION STYLE

APA

Arani, A. H., Hu, P., & Zhu, Y. (2024). UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of Recent Learning Algorithms. IEEE Open Journal of Vehicular Technology, 5, 1004–1023. https://doi.org/10.1109/OJVT.2024.3434486

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free