The numerous applications of internet of things (IoT) and sensor networks combined with specialized devices used in each has led to a proliferation of domain specific middleware, which in turn creates interoperability issues between the corresponding architectures and the technologies used. But what if we wanted to use a machine learning algorithm to an IoT application so that it adapts intelligently to changes of the environment, or enable a software agent to enrich with artificial intelligence (AI) a smart home consisting of multiple and possibly incompatible technologies? In this work we answer these questions by studying a framework that explores how to simplify the incorporation of AI capabilities to existing sensor-actuator networks or IoT infrastructures making the services offered in such settings smarter. Towards this goal we present eVATAR+, a middleware that implements the interactions within the context of such integrations systematically and transparently from the developers’ perspective. It also provides a simple and easy to use interface for developers to use. eVATAR+ uses JAVA server technologies enhanced by mediator functionality providing interoperability, maintainability and heterogeneity support. We exemplify eVATAR+ with a concrete case study and we evaluate the relative merits of our approach by comparing our work with the current state of the art.
CITATION STYLE
Dipsis, N., & Stathis, K. (2020). A RESTful middleware for AI controlled sensors, actuators and smart devices. Journal of Ambient Intelligence and Humanized Computing, 11(7), 2963–2986. https://doi.org/10.1007/s12652-019-01439-3
Mendeley helps you to discover research relevant for your work.