The photoregulation of a mechanochemical polymer scission

62Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Control over mechanochemical polymer scission by another external stimulus may offer an avenue to further advance the fields of polymer chemistry, mechanochemistry, and materials science. Herein, we demonstrate that light can regulate the mechanochemical behavior of a diarylethene-conjugated Diels–Alder adduct (DAE/DA) that reversibly isomerizes from a weaker open form to a stronger closed form under photoirradiation. Pulsed ultrasonication experiments, spectroscopic analyses, and density functional theory calculations support the successful photoregulation of the reactivity of this DAE/DA mechanophore, which is incorporated at the mid-chain of a polymer, and indicate that higher force and energy are required to cleave the closed form of the DAE/DA mechanophore relative to the open form. The present photoregulation concept provides an attractive approach toward the generation of new mechanofunctional polymers.

Cite

CITATION STYLE

APA

Kida, J., Imato, K., Goseki, R., Aoki, D., Morimoto, M., & Otsuka, H. (2018). The photoregulation of a mechanochemical polymer scission. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05996-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free