Motivation: High-throughput and high-resolution mass spectrometry instruments are increasingly used for disease classification and therapeutic guidance. However, the analysis of immense amount of data poses considerable challenges. We have therefore developed a novel method for dimensionality reduction and tested on a published ovarian high-resolution SELDI-TOF dataset. Results: We have developed a four-step strategy for data pre-processing based on: (1) binning, (2) Kolmogorov-Smirnov test, (3) restriction of coefficient of variation and (4) wavelet analysis. Subsequently, support vector machines were used for classification. The developed method achieves an average sensitivity of 97.38% (sd = 0.0125) and an average specificity of 93.30% (sd = 0.0174) in 1000 independent k-fold cross-validations, where k = 2,..., 10. © The Author 2005. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Yu, J. S., Ongarello, S., Fiedler, R., Chen, X. W., Toffolo, G., Cobelli, C., & Trajanoski, Z. (2005). Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics, 21(10), 2200–2209. https://doi.org/10.1093/bioinformatics/bti370
Mendeley helps you to discover research relevant for your work.