The genetic control of growth rate: A systems biology study in yeast

42Citations
Citations of this article
161Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Control of growth rate is mediated by tight regulation mechanisms in all free-living organisms since long-term survival depends on adaptation to diverse environmental conditions. The yeast, Saccharomyces cerevisiae, when growing under nutrient-limited conditions, controls its growth rate via both nutrient-specific and nutrient-independent gene sets. At slow growth rates, at least, it has been found that the expression of the genes that exert significant control over growth rate (high flux control or HFC genes) is not necessarily regulated by growth rate itself. It has not been determined whether the set of HFC genes is the same at all growth rates or whether it is the same in conditions of nutrient limitation or excess.Results: HFC genes were identified in competition experiments in which a population of hemizygous diploid yeast deletants were grown at, or close to, the maximum specific growth rate in either nutrient-limiting or nutrient-sufficient conditions. A hemizygous mutant is one in which one of any pair of homologous genes is deleted in a diploid, These HFC genes divided into two classes: a haploinsufficient (HI) set, where the hemizygous mutants grow slower than the wild type, and a haploproficient (HP) set, which comprises hemizygotes that grow faster than the wild type. The HI set was found to be enriched for genes involved in the processes of gene expression, while the HP set was enriched for genes concerned with the cell cycle and genome integrity.Conclusion: A subset of growth-regulated genes have HFC characteristics when grown in conditions where there are few, or no, external constraints on the rate of growth that cells may attain. This subset is enriched for genes that participate in the processes of gene expression, itself (i.e. transcription and translation). The fact that haploproficiency is exhibited by mutants grown at the previously determined maximum rate implies that the control of growth rate in this simple eukaryote represents a trade-off between the selective advantages of rapid growth and the need to maintain the integrity of the genome. © 2012 Pir et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Pir, P., Gutteridge, A., Wu, J., Rash, B., Kell, D. B., Zhang, N., & Oliver, S. G. (2012). The genetic control of growth rate: A systems biology study in yeast. BMC Systems Biology, 6. https://doi.org/10.1186/1752-0509-6-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free