Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks

30Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

This study investigates the effects of hooked-end fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. To achieve this, three different fiber geometries, i.e., three-dimensional (3D), four-dimensional (4D), and five-dimensional (5D), and volume fractions of 0.37%, 0.6%, and 1.0% were considered. Test results indicate that a higher number of hook ends can more effectively enhance the flexural strength and flexural strength margin at all volume fractions than a lower number, so that the order of effectiveness of hooked-end fibers on the flexural strength parameters was as follows: 5D > 4D > 3D. To satisfy the ductility index of 0.39, the amounts of 3D, 4D, and 5D hooked steel fibers should be in the range of 0.98%-1.10%. Moreover, at a fiber volume fraction of 1.0%, only multiple cracking behaviors were observed, and the numerical results indicated that the volume fraction should be equal to 1.0% to guarantee a deflection-hardening response of pedestrian decks, regardless of the hooked-end fiber geometry. Consequently, a 1.0% by volume of hooked-end steel fiber is recommended to replace the minimum longitudinal steel rebars and guarantee a ductile flexural behavior with multiple cracks for pedestrian decks made of high-strength concrete.

Cite

CITATION STYLE

APA

Lee, S. J., Yoo, D. Y., & Moon, D. Y. (2019). Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061241

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free