Complementary chromatic adaptation in a filamentous blue-green alga

1.4kCitations
Citations of this article
869Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fluorescent and red light environments generate greatly different patterns of pigmentation and morphology in Fremyella diplosiphon. Most strikingly, red-illuminated cultures contain no measurable C-phycoerythrin and have a mean filament length about 10 times shorter than fluorescent-illuminated cultures. C-phycoerythrin behaves as a photoinducible constituent of this alga. Spectrophotometric and immunochemical procedures were devised so that C-phycoerythrin metabolism could be studied quantitatively with [14C]-phenylalanine pulse-chased cultures. Transfer of red-illuminated cultures to fluorescent light initiates C-phycoerythrin production by essentially de novo synthesis. C-phycoerythrin is not degraded to any significant extent in cultures continuously illuminated with fluorescent light. Transfer of fluorescent-illuminated cultures to red light causes an abrupt cessation of C-phycoerythrin synthesis. The C-phycoerythrin content of cultures adapting to red light decreases and subsequently becomes constant. Loss of C-phycoerythrin is not brought about by metabolic degradation, but rather by a decrease in mean filament length which is effected by transcellular breakage. In this experimental system, light influences intracellular C-phycoerythrin levels by regulating the rate of synthesis of the chromoprotein. © 1973, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Bennett, A., & Bogobad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free