Enhanced recognition ability, cell uptake capacity, and biostability are characteristics attributed to aptamer-based targeted anticancer agents, and are possibly associated with increased accumulation at the tumor site, improved therapeutic efficacy and reduced negative side effects. Herein, a phosphorothioate backbone modification strategy was applied to regulate the biomedical properties of pancreatic cancer cell-targeting aptamer for efficient in vivo drug delivery. Specifically, the CD71- targeting aptamer XQ-2d was modified into a fully thio-substituted aptamer S-XQ-2d, improving the plasma stability of S-XQ-2d and mitomycin C (MMC)-functionalized S-XQ-2d (MFSX), thus considerably prolonging their half-life in mice. Moreover, the binding and uptake capacities of S-XQ-2d were significantly enhanced. MFSX showed the same level of cytotoxicity as that of MMC against targeted cancer cells, but lower toxicity to non-targeted cells, highlighting its specificity and biosafety. Brief mechanistic studies demonstrated that XQ-2d and S-XQ-2d had different interaction modes and internalization pathways with the targeted cells.
CITATION STYLE
Yang, Q., Peng, Y., Deng, Z., Zhang, D., Long, C. Y., Zhang, G. R., … Tan, W. (2023). Regulating the properties of XQ-2d for targeted delivery of therapeutic agents to pancreatic cancers. National Science Review, 10(8). https://doi.org/10.1093/nsr/nwad113
Mendeley helps you to discover research relevant for your work.