Individual animals are adept at making decisions and have cognitive abilities, such as memory, which allowthem to hone their decisions. Social animals can also share information. This allows social animals to make adaptive grouplevel decisions. Both individual and collective decision-making systems also have drawbacks and limitations, and while both are well studied, the interaction between them is still poorly understood. Here, we study how individual and collective decision-making interact during ant foraging. We first gathered empirical data on memory-based foraging persistence in the ant Lasius niger. We used these data to create an agent-based model where ants may use social information (trail pheromones), private information (memories) or both to make foraging decisions. The combined use of social and private information by individuals results in greater efficiency at the group level than when either information source was used alone. The modelled ants couple consensus decision-making, allowing them to quickly exploit high-quality food sources, and combined decision-making, allowing different individuals to specialize in exploiting different resource patches. Such a composite collective decision-making system reaps the benefits of both its constituent parts. Exploiting such insights into composite collective decision-making may lead to improved decision-making algorithms.
CITATION STYLE
Czaczkes, T. J., Czaczkes, B., Iglhaut, C., & Heinze, J. (2015). Composite collective decision-making. Proceedings of the Royal Society B: Biological Sciences, 282(1809). https://doi.org/10.1098/rspb.2014.2723
Mendeley helps you to discover research relevant for your work.