Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers

52Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The creation of tissue-engineered cartilage and bone, using cells from an easily available source seeded on a suitable biomaterial, may have a vast impact on regenerative medicine. While various types of adult stem cells have shown promising results, their use is accompanied by difficulties associated with harvest and culture. The proposed inherent plasticity of dermally derived human fibroblasts may render them useful in tissue-engineering applications. In the present study, human dermal fibroblasts cultured on macroporous gelatine microcarriers encapsulated in platelet-rich plasma into three-dimensional constructs were differentiated towards chondrogenic and osteogenic phenotypes using specific induction media. The effect of flow-induced shear stress on osteogenic differentiation of fibroblasts was also evaluated. The generated tissue constructs were analysed after 4, 8 and 12 weeks using routine and immunohistochemical stainings as well as an enzyme activity assay. The chondrogenic-induced tissue constructs were composed of glycosaminoglycan-rich extracellular matrix, which stained positive for aggrecan. The osteogenic-induced tissue constructs were composed of mineralised extracellular matrix containing osteocalcin and osteonectin, with cells showing an increased alkaline phosphatase activity. Increased osteogenic differentiation was seen when applying flow-induced shear stress to the culture. Un-induced fibroblast controls did not form cartilage- or bone-like tissues. Our findings suggest that primary human dermal fibroblasts can be used to form cartilage- and bone-like tissues in vitro when cultured in specific induction media. © 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons.

Cite

CITATION STYLE

APA

Sommar, P., Pettersson, S., Ness, C., Johnson, H., Kratz, G., & Junker, J. P. E. (2010). Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. Journal of Plastic, Reconstructive and Aesthetic Surgery, 63(6), 1036–1046. https://doi.org/10.1016/j.bjps.2009.02.072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free