Message scheduling methods for belief propagation

16Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Approximate inference in large and densely connected graphical models is a challenging but highly relevant problem. Belief propagation, as a method for performing approximate inference in loopy graphs, has shown empirical success in many applications. However, convergence of belief propagation can only be guaranteed for simple graphs. Whether belief propagation converges depends strongly on the applied message update scheme, and specialized schemes can be highly beneficial. Yet, residual belief propagation is the only established method utilizing this fact to improve convergence properties. In experiments, we observe that residual belief propagation fails to converge if local oscillations occur and the same sequence of messages is repeatedly updated. To overcome this issue, we propose two novel message update schemes. In the first scheme we add noise to oscillating messages. In the second scheme we apply weight decay to gradually reduce the influence of these messages and consequently enforce convergence. Furthermore, in contrast to previous work, we consider the correctness of the obtained marginals and observe significant performance improvements when applying the proposed message update schemes to various Ising models with binary random variables.

Cite

CITATION STYLE

APA

Knoll, C., Rath, M., Tschiatschek, S., & Pernkopf, F. (2015). Message scheduling methods for belief propagation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9285, pp. 295–310). Springer Verlag. https://doi.org/10.1007/978-3-319-23525-7_18

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free