Monitoring dynamic changes in oxygen consumption rates (OCR) of a living organism in real time provide an indirect method of monitoring changes in mitochondrial function during development, aging, or malfunctioning processes. In this study, we developed a microfluidic device integrated with an optical detection system to measure the OCR of a single developing Caenorhabditis elegans (C. elegans) from postembryonic development to aging stages in real time via phase-based phosphorescence lifetime measurement. The device consists of two components: an acrylic microwell deposited with an oxygen-sensitive luminescent layer for oxygen (O2) measurement and a microfluidic module with a pneumatically driven acrylic lid to controllably seal the microwell. We successfully measured the basal respiration (basal OCR, in pmol O2/min/worm) of a single C. elegans inside a microwell from the stages of postembryonic development (larval stages) through adulthood to aged adult. Sequentially adding metabolic inhibitors to block bioenergetic pathways allowed us to measure the metabolic profiles of a single C. elegans at key growth and aging stages, determining the following fundamental parameters: basal OCR, adenosine triphosphate (ATP)-linked OCR, maximal OCR, reserve respiratory capacity, OCR due to proton leak, and non-mitochondrial OCR. The bioenergetic health index (BHI) was calculated from these fundamental parameters to assess the bioenergetic health of a single developing C. elegans from the postembryonic development to aging stages. The changes in BHI are correlated to C. elegans development stage, with the highest BHI = 27.5 for 4-day-old adults, which possess well-developed bioenergetic functionality. Our proposed platform demonstrates for the first time the feasibility of assessing the BHI of a single C. elegans from postembryonic development to aging stages inside a microfluidic device and provides the potential for a wide variety of biomedical applications that relate mitochondrial malfunction and diseases.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Huang, S. H., & Lin, Y. W. (2018). Bioenergetic health assessment of a single Caenorhabditis elegans from postembryonic development to aging stages via monitoring changes in the oxygen consumption rate within a microfluidic device. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082453