Micropillar compression study on the deformation behavior of electrodeposited Ni-Mo films

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The influence of Mo addition on the compression behavior of Ni films was studied by micropillar deformation tests. Thus, films with low (0.4 at. %) and high (5.3 at. %) Mo contents were processed by electrodeposition and tested by micropillar compression up to the plastic strain of about 0.26. The microstructures of the films before and after compression were studied by transmission electron microscopy. It was found that the as-deposited sample with high Mo concentration has a much lower grain size (~26 nm) than that for the layer with low Mo content (~240 nm). In addition, the density of lattice defects such as dislocations and twin faults was considerably higher for the specimen containing a larger amount of Mo. These differences resulted in a four-times higher yield strength for the latter sample. The Ni film with low Mo concentration showed a normal strain hardening while the sample having high Mo content exhibited a continuous softening after a short hardening period. The strain softening was attributed to detwinning during deformation.

Cite

CITATION STYLE

APA

Gubicza, J., Kapoor, G., Ugi, D., Péter, L., Lábár, J. L., & Radnóczi, G. (2020). Micropillar compression study on the deformation behavior of electrodeposited Ni-Mo films. Coatings, 10(3). https://doi.org/10.3390/coatings10030205

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free