Empirical evidence is presented to support a hypothesis that the interdecadal variation of the Indian summer monsoon and that of the tropical SST are parts of a tropical coupled ocean-atmosphere mode. The interdecadal variation of the Indian monsoon rainfall (IMR) is strongly correlated with the interdecadal variations of various indices of El Nino-Southern Oscillation (ENSO). It is also shown that the interannual variances of both IMR and ENSO indices vary in phase and follow a common interdecadal variation. However, the correlation between IMR and eastern Pacific SST or between IMR and Southern Oscillation index (SOI) on the interannual timescale does not follow the interdecadal oscillation. The spatial patterns of SST and sea level pressure (SLP) associated with the interdecadal variation of IMR are nearly identical to those associated with the interdecadal variations of ENSO indices. As has been shown earlier in the case of ENSO, the global patterns associated with the interdecadal and interannual variability of the Indian monsoon are quite similar. The physical link through which ENSO is related to decreased monsoon rainfall on both interannual and interdecadal timescales has been investigated using National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis products. The decrease in the Indian monsoon rainfall associated with the warm phases of ENSO is due to an anomalous regional Hadley circulation with descending motion over the Indian continent and ascending motion near the equator sustained by the ascending phase of the anomalous Walker circulation in the equatorial Indian Ocean. It is shown that, to a large extent, both the regional Hadley circulation anomalies and Walker circulation anomalies over the monsoon region associated with the strong (weak) phases of the interdecadal oscillation are similar to those associated with the strong (weak) phases of the interannual variability. However, within a particular phase of the interdecadal oscillation, there are several strong and weak phases of the interannual variation. During a warm eastern Pacific phase of the interdecadal variation, the regional Hadley circulation associated with El Nino reinforces the prevailing anomalous interdecadal Hadley circulation while the associated with La Nina opposes the prevailing Hadley circulation. During the warm phase of the interdecadal oscillation. El Nino events are expected to be strongly related to monsoon droughts while La Nina events may not have significant relation. On the other hand, during the cold eastern Pacific phase of the interdecadal SST oscillation, La Nina events are more likely to be strongly related to monsoon floods while El Nino events are unlikely to have a significant relation with the Indian monsoon. This picture explains the observation that the correlations between IMR and ENSO indices on the interannual timescale do not follow the interdecadal oscillation as neither phase of the interdecadal oscillation favors a stronger (or weaker) correlation between monsoon and ENSO indices.
CITATION STYLE
Krishnamurthy, V., & Goswami, B. N. (2000). Indian monsoon-ENSO relationship on interdecadal timescale. Journal of Climate, 13(3), 579–595. https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2
Mendeley helps you to discover research relevant for your work.