Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells

17Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The Gab2 docking protein acts as an important signal amplifier downstream of various growth factor receptors and Bcr-Abl, the driver of chronic myeloid leukaemia (CML). Despite the success of Bcr-Abl tyrosine kinase inhibitors (TKI) in the therapy of CML, TKI-resistance remains an unsolved problem in the clinic. We have recently shown that Gab2 signalling counteracts the efficacy of four distinct Bcr-Abl inhibitors. In the course of that project, we noticed that two clinically relevant drugs, imatinib and dasatinib, provoke distinct alterations in the electrophoretic mobility of Gab2, its signalling output and protein interactions. As the signalling potential of the docking protein is highly modulated by its phosphorylation status, we set out to obtain more insights into the impact of TKIs on Gab2 phosphorylation. Findings. Using stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS), we show now that imatinib and dasatinib provoke distinct effects on the phosphorylation status and interactome of Gab2. This study identifies several new phosphorylation sites on Gab2 and confirms many sites previously known from other experimental systems. At equimolar concentrations, dasatinib is more effective in preventing Gab2 tyrosine and serine/threonine phosphorylation than imatinib. It also affects the phosphorylation status of more residues than imatinib. In addition, we also identify novel components of the Gab2 signalling complex, such as casein kinases, stathmins and PIP1 as well as known interaction partners whose association with Gab2 is disrupted by imatinib and/or dasatinib. Conclusions: By using MS-based proteomics, we have identified new and confirmed known phosphorylation sites and interaction partners of Gab2, which may play an important role in the regulation of this docking protein. Given the growing importance of Gab2 in several tumour entities we expect that our results will help to understand the complex regulation of Gab2 and how this docking protein can contribute to malignancy. © 2013 Halbach et al.; licensee BioMed Central Ltd.

References Powered by Scopus

MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification

11309Citations
N/AReaders
Get full text

Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia

3057Citations
N/AReaders
Get full text

Epidermal growth factor receptor mutations in lung cancer

2746Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Natural course and biology of CML

183Citations
N/AReaders
Get full text

Structure and function of Gab2 and its role in cancer (Review)

62Citations
N/AReaders
Get full text

BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines

35Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Halbach, S., Rigbolt, K. T., Wöhrle, F. U., Diedrich, B., Gretzmeier, C., Brummer, T., & Dengjel, J. (2013). Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Communication and Signaling, 11(1). https://doi.org/10.1186/1478-811X-11-30

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 9

41%

Researcher 9

41%

Professor / Associate Prof. 4

18%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 12

52%

Biochemistry, Genetics and Molecular Bi... 6

26%

Medicine and Dentistry 3

13%

Engineering 2

9%

Save time finding and organizing research with Mendeley

Sign up for free