In this paper, two types (i.e., type-A and type-B) of hybrid microstrip/defected ground structure (DGS) cells are proposed for passive circuit implementation with ultra-wide stopband. Both cells consist of the stepped-impedance DGS and embedded folded slotline on the ground, which could obtain the dual-resonances. In type-A cell, a microstrip T-stub on the top side is introduced, which can not only allocate a strong coupling to the DGS with slotline on the bottom side, but also act as the input/output port. To finely adjust the dual-resonances of the type-B cell, a grounded microstrip patch is used. Meanwhile, such compact cells could feature an ultra-wide upper stopband, due to their own slow-wave effect. Based on the aforementioned hybrid microstrip/DGS cells, two dual-band bandpass filters (BPFs) and a dual-band filtering power divider (FPD) are proposed and fabricated. Measured and simulated results are in a fairly-close agreement. Both dual-band BPFs exhibit the ultra-wide upper stopband, which extends up to 40 GHz with a high rejection level about 30 dB. Besides, the dual-band FPD has merits of more than 18.7 dB of in-band isolation and 28 dB stopband rejection levels up to 40 GHz.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Rao, Y., Qian, H. J., Yang, B., Gomez-Garcia, R., & Luo, X. (2020). Dual-band bandpass filter and filtering power divider with ultra-wide upper stopband using hybrid microstrip/DGS dual-resonance cells. IEEE Access, 8, 23624–23637. https://doi.org/10.1109/ACCESS.2020.2970209