Although structurally similar to the natural plant hormone indol-3-acetic acid, auxin herbicides were developed for purposes other than growth, and have been successfully used in agriculture for the last 60 years. Concerted efforts are being made to understand and decipher the precise mechanism of action of IAA and synthetic auxins. Innumerable results need to be interconnected to resolve the puzzle of auxin biology and action mode of auxin herbicides. To date, different breakthroughs are providing more insights into the process of plant-herbicide interactions. Here we highlight some of the latest findings on how the 2,4-dichlorophenoxyacetic acid damages susceptible broadleaf plants, emphasizing the role of ROS as a downstream component of the auxin signal transduction under herbicide treatment. © 2012 Landes Bioscience.
CITATION STYLE
Pazmiño, D. M., Romero-Puertas, M. C., & Sandalio, L. M. (2012). Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signaling and Behavior, 7(3), 425–427. https://doi.org/10.4161/psb.19124
Mendeley helps you to discover research relevant for your work.