Perioperative Cerebral Oxygenation Metabolism in Neonates with Hypoplastic Left Heart Syndrome or Transposition of the Great Arteries

6Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Optimizing oxygen delivery to the brain is one of the main goals in children with congenital heart defects after surgery. It has been shown that cerebral oxygen saturation (cSO2) is depressed within the first day after neonatal cardiopulmonary bypass surgery. However, peri-operative cerebral oxygen metabolism has not yet been assessed in previous studies. The aim of this study was to describe the peri-operative changes in cerebral oxygen metabolism in neonates with congenital heart defects following cardiopulmonary bypass surgery. Prospective observational cohort study. PICU of a tertiary referral center. Fourteen neonates with hypoplastic left heart syndrome (HLHS) undergoing Norwood procedure and 14 neonates with transposition of great arteries (TGA) undergoing arterial switch operation (ASO) were enrolled. Pediatric heart surgery. We measured non-invasively regional cSO2 and microperfusion (rcFlow) using tissue spectrometry and laser Doppler flowmetry before and after surgery. Cerebral fractional tissue oxygen extraction (cFTOE), the arterio–cerebral difference in oxygen content (acDO2) and approximated cerebral metabolic rate of oxygen (aCMRO2) were calculated. According to the postsurgical hemodynamics, arterial saturation (aSO2) normalized immediately after surgery in the TGA group, whereas HLHS patients still were cyanotic. cSO2 significantly increased in TGA group over 48 h after ASO (p = 0.004) and was significantly higher compared to HLHS group after Norwood procedure. cFTOE as a risk marker for brain injury was elevated before surgery (TGA group 0.37 ± 0.10, HLHS group 0.42 ± 0.12) and showed a slight decrease after ASO (p = 0.35) but significantly decreased in patients after Norwood procedure (p = 0.02). Preo-peratively, acDO2 was significantly higher in patients with HLHS compared to patients with TGA (7.7 ± 2.5 vs. 5.2 ± 1.6 ml/dl, p = 0.005), but normalized in the posto-perative course. Before surgery, the aCMRO2 was slightly higher in the HLHS group (5.1 ± 1.5 vs. 3.9 ± 2.5 AU, p = 0.14), but significantly decreased after Norwood procedure (− 1.6 AU, p = 0.009). There was no difference in rcFlow between both groups and between the points in time prior and after surgery. Neonates undergoing cardiac surgery suffer from peri-operative changes in hemodynamics and cerebral hypoxemic stress. The cerebral oxygen metabolism seems to be more affected in cyanotic children with functionally univentricular hearts compared to post-operative acyanotic patients. Additional stress factors must be avoided to achieve the best possible neurological outcome.

Cite

CITATION STYLE

APA

Neunhoeffer, F., Hofbeck, M., Schlensak, C., Schuhmann, M. U., & Michel, J. (2018). Perioperative Cerebral Oxygenation Metabolism in Neonates with Hypoplastic Left Heart Syndrome or Transposition of the Great Arteries. Pediatric Cardiology, 39(8), 1681–1687. https://doi.org/10.1007/s00246-018-1952-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free