Chemical communication in crustaceans: Research challenges for the twenty-first century

48Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Chemical signals play an important role during various life stages of crustaceans. Settling of larvae, parent-offspring communication, mate finding, mate choice, aggressive contests, and dominance hierarchies are all mediated by chemical signals. Enormous advances have been made on understanding the function of chemical signals in crustaceans and we are on the doorstep of major advances in chemical characterization of pheromones. In many species urine is the carrier of chemical signals. Crustaceans control release and transfer direction of urine, but it is unknown whether crustacean senders can manipulate the composition of urineborne pheromones. Chemicals contained in the urine effectively convey information about conspecific properties such as sex, sexual receptivity, species identity, health status, motivation to fight, dominance, individual identity, and molt stage. In larger species (shrimp, crabs, lobsters, crayfish) signal delivery is often aided by self-generated fanning currents that flush chemicals towards receivers, which themselves might actively pull water towards their sensory structures. Antennal flicking also supports molecule exchange at the receptor level. Contact pheromones play a role in sex recognition in several crustacean taxa and in settlement of barnacles. Large crustacean species show little or no sexual dimorphism in receptor structures, but in smaller taxa, e.g. peracarids and copepods, males often have larger antennae than females. Whether differences in sexual roles have also resulted in sex-specific brain centers is not known at present. While pheromones play an important role in mate finding and species recognition, there are numerous examples from peracarids and copepods where males pursue or even form precopulatory pairs with females of closely related congeners. Differentiation of chemicals often appears to be insufficient to guarantee reproductive isolation. In many freshwater and coastal habitats, pollutants may also disrupt chemical communication in crustaceans, but the specific mechanisms of interference are not well understood. The chemical characterization of crustacean pheromones is viewed as a major step in improving our understanding of chemical communication. Knowing the chemical nature of pheromones in freshwater species will boost research on aquatic crustaceans. Interdisciplinary work between chemists (metabolomics), behavioral ecologists (bioassays), neurobiologists (chemoreception), and molecular biologists (genomics) promises to produce significant advances in our understanding of crustacean chemical communication during the coming decade.

Cite

CITATION STYLE

APA

Thiel, M., & Breithaupt, T. (2011). Chemical communication in crustaceans: Research challenges for the twenty-first century. Chemical Communication in Crustaceans. Springer New York. https://doi.org/10.1007/978-0-387-77101-4_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free