Estimates of leaflet and fruit macronutrient (N, P, K, Ca, and Mg) accumulation and resorption were developed in six (three heavily cropping, on-year and three noncropping, off-year) mature pistachio (Pistacia vera L. 'Kerman') trees over three growing seasons during three stages of phenology [the spring growth flush (April to June); seed fill (late June to September); and leaf senescence (September to November)]. Crop load influenced total nutrient content per tree in annual organs (leaves and fruit), the relative allocation of nutrients between leaves and fruit, temporal patterns of nutrient accumulation in annual organs, and the magnitude of net leaf nutrient resorption per tree prior to leaf full. In off-year trees, macronutrient accumulation in annual organs (leaves) was concentrated during the spring flush of growth. In contrast, significant macronutrient accumulation in annual organs of on-year tree (leaves plus fruit) occurred not only during the spring flush of growth but also during seed fill. Duration and magnitude of macronutrient accumulation were greater in on-year vs. off-year trees. Fruit N and P demand during seed fill was partially met by a net decrease in the N and P contents of the pericarp. These decreases in pericarp nutrient content during seed fill were equivalent to 32% and 26% of embryo accumulation of N and P, respectively. Fruit demand for N, P, and K during the spring flush of 'on' years was accompanied by reduced leaf N, P, and K contents per tree. Net leaf N, Ca, and Mg resorption per tree during leaf senescence differed with crop load. Net leaf N resorption was significantly greater in off-year trees than on-year trees. Leaf N resorption presumably represents an important component of the N pool stored in perennial tree parts during dormancy. The greater leaf N resorption following 'off' years was a function of greater leaf N concentration and greater leaf biomass per tree. In contrast, net leaf resorption of Ca and Mg was greater in on-year vs. off-year trees. Experimental validation of the magnitude and periodicity of nutrient uptake by mature pistachio trees is needed during the alternate-bearing cycle, especially in light of the potential contribution of current fertilization practices to groundwater contamination.
CITATION STYLE
Picchioni, G. A., Brown, P. H., Weinbaum, S. A., & Muraoka, T. T. (1997). Macronutrient allocation to leaves and fruit of mature, alternate-bearing pistachio trees: Magnitude and seasonal patterns at the whole-canopy level. Journal of the American Society for Horticultural Science, 122(2), 267–274. https://doi.org/10.21273/jashs.122.2.267
Mendeley helps you to discover research relevant for your work.