Similarity Is Not Entailment - Jointly Learning Similarity Transformations for Textual Entailment

1Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Predicting entailment between two given texts is an important task upon which the performance of numerous NLP tasks depend on such as question answering, text summarization, and information extraction. The degree to which two texts are similar has been used extensively as a key feature in much previous work in predicting entailment. However, using similarity scores directly, without proper transformations, results in suboptimal performance. Given a set of lexical similarity measures, we propose a method that jointly learns both (a) a set of non-linear transformation functions for those similarity measures and, (b) the optimal non-linear combination of those transformation functions to predict textual entailment. Our method consistently outperforms numerous baselines, reporting a micro-averaged F-score of 46.48 on the RTE-7 benchmark dataset. The proposed method is ranked 2-nd among 33 entailment systems participated in RTE-7, demonstrating its competitiveness over numerous other entailment approaches. Although our method is statistically comparable to the current state-of-the-art, we require less external knowledge resources.

Cite

CITATION STYLE

APA

Yokote, K. I., Bollegala, D., & Ishizuka, M. (2012). Similarity Is Not Entailment - Jointly Learning Similarity Transformations for Textual Entailment. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, AAAI 2012 (pp. 1720–1726). AAAI Press. https://doi.org/10.1609/aaai.v26i1.8348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free