B lymphocyte-intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation.
CITATION STYLE
Hwang, I. Y., Park, C., Harrison, K., & Kehrl, J. H. (2009). TLR4 signaling augments B lymphocyte migration and overcomes the restriction that limits access to germinal center dark zones. Journal of Experimental Medicine, 206(12), 2641–2657. https://doi.org/10.1084/jem.20091982
Mendeley helps you to discover research relevant for your work.