This paper proposes a new linear combination model to predict the closing prices on multivariate financial data sets. The new approach integrates two delays of deep learning methods called the two-delay combination model. The forecasts are derived from three different deep learning models: the multilayer perceptron (MLP), the convolutional neural network (CNN) and the long short-term memory (LSTM) network. Moreover, the weight combination of our proposed model is estimated using the differential evolution (DE) algorithm. The proposed model is built and tested for three high-frequency stock data in financial markets—Microsoft Corporation (MSFT), Johnson & Johnson (JNJ) and Pfizer Inc. (PFE). The individual and combination forecast methods are compared using the root mean square error (RMSE) and the mean absolute percentage error (MAPE). The state-of-the-art combination models used in this paper are the equal weight (EW), the inverse of RMSE (INV-RMSE) and the variance-no-covariance (VAR-NO-CORR) methods. These comparisons demonstrate that our proposed approach using DE weight’s optimization has significantly lower forecast errors than the individual model and the state-of-the-art weight combination procedures for all experiments. Consequently, combining two delay deep learning models using differential evolution weights can effectively improve the stock price prediction.
CITATION STYLE
Ratchagit, M., & Xu, H. (2022). A Two-Delay Combination Model for Stock Price Prediction. Mathematics, 10(19). https://doi.org/10.3390/math10193447
Mendeley helps you to discover research relevant for your work.