As a new energy harvesting technology, triboelectric nanogenerators are widely used for vibration mechanical energy harvesting. However, the current schemes ignore the composite characteristics of vibration, with problems such as utilization and low collection efficiency. In this paper, a random resonance cantilever beam triboelectric nanogenerator (RCB-TENG) with dual-mode coupled is presented, the working mode is a coupling form of in-plane sliding and vertical contact-separation that can effectively collect complex vibration energy in transverse and longitudinal directions. The influences of the structural parameters of the RCB-TENG and different dielectric materials on the output performance are systematically investigated. The single vibration module achieved a power density of 463.56 mW/m2 and a transfer charge of 10.7 μC at a vibration frequency of 46 Hz, an increase in power density, and a transfer charge of 4.94 and 3.82 times, respectively, compared to the conventional contact-separation mode. Finally, the RCB-TENG was tested in practice, and it was observed that nine 1 W commercial LED bulbs and 500 5 mm diameter LED lamps were successfully lit. This work offers new ideas for distributed energy harvesting technologies and holds broad promise in the field of energy harvesting from wind, water, wave, and random vibrations caused by mechanical energy.
CITATION STYLE
Yu, M., Yu, D., Hua, Y., Wang, Y., Liu, J., & Xie, Z. (2023). Dual-Mode Coupled Triboelectric Nanogenerator for Harvesting Random Vibration Energy. ACS Omega, 8(4), 3842–3849. https://doi.org/10.1021/ACSOMEGA.2C06117
Mendeley helps you to discover research relevant for your work.