Nonconventional driving force for selective oxidative C–C coupling reaction due to concurrent and curious formation of Ag0

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Is it possible to ‘explore’ metal’s intrinsic property—a cohesive interaction—which naturally transform M0 into an aggregate or a particle or film for driving oxidative C–C bond formation? With this intention, reduction of [Ag(NH3)2]+ to Ag0 with concurrent oxidation of different phenols/naphthols to biphenyls was undertaken. The work is originated during careful observation of an undergraduate experiment—Tollens’ test—where silver mirror film deposition takes place on the walls of borosilicate glass test tube. When the same reaction was carried out in polypropylene (plastic-Eppendorf) tube, we observed aggregation of Ag0 leading to floating Ag-particles but not silver film deposition. This prompted us to carry out challenging cross-coupling reaction by ONLY changing the surface of the reaction flask from glass to plastic to silicones. To our surprise, we observed good selective oxidative homo-coupling on Teflon surface while cross-coupling in Eppendorf vial. Thus, we propose that the formation of biphenyl is driven by the macroscopic growth of Ag0 into [Ag-particle] orchestrated by Ag…Ag cohesive interaction. To validate results, experiments were also performed on gram scale. More importantly, oxidation of β-naphthol carried out in quartz (chiral) tube which yielded slight enantioselective excess of BINOL. Details are discussed.

Cite

CITATION STYLE

APA

Bhanderi, K., Ghalsasi, P. S., & Inoue, K. (2021). Nonconventional driving force for selective oxidative C–C coupling reaction due to concurrent and curious formation of Ag0. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81020-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free