The ability to view structures of proteins at atomic resolution, facilitated by the rise of macromolecular crystallography, has had a tremendous impact in many areas of sciences, including molecular pharmacology, drug discovery and biotechnology. However, the teaching of macromolecular crystallography in universities across the globe has been less than optimal. This could be attributed to the interdisciplinary nature of this subject, making it appear esoteric and incomprehensible, at least at first glance, for students who have exclusive training in only one specific discipline. For the instructor, this problem is compounded further by the plethora of complex concepts and specialized terminologies that the science of macromolecular crystallography has accumulated over the course of its evolution. Moreover, the advent of robotics and several sophisticated software algorithms have reduced the incentive to understand the beautiful conceptual bedrock on which this subject is based. As a way of addressing some of the challenges delineated above, this Words of Advice article attempts to formulate the broad framework within which the teaching and learning of macromolecular crystallography should be approached. It advocates the acknowledgement that this is an interdisciplinary field, with substantial contributions from chemical, physical, biological and mathematical sciences, requiring the evolution of teaching approaches that acknowledge this reality. Moreover, it suggests the use of visual tools, use of computational resources and history to make the subject more relatable to students.
CITATION STYLE
Srinivasan, B. (2023). Words of advice: teaching macromolecular crystallography. FEBS Journal, 290(23), 5441–5455. https://doi.org/10.1111/febs.16790
Mendeley helps you to discover research relevant for your work.