Objective: To investigate the effect of GSK-137647A, the first non-carboxylic FFA4 agonist, on osteogenic and adipogenic differentiation of bone mesenchymal stem cells (BMSCs) of db/db mice. Methods: Bone mesenchymal stem cells were extracted from 8-week-old db/db mice. Cell Counting Kit-8 was used to evaluate the toxicity of GSK-137647A on BMSCs, and the optimal concentration of GSK-137647A was selected to investigate the osteogenic and adipogenic differentiation of BMSCs, and relevant indicators of osteoblasts and adipocytes were detected. Key findings: GSK-137647A had no significant toxicity on cell growth and proliferation. Moreover, GSK-137647A showed a significant increase in mineralization of BMSCs differentiated osteoblasts compared to the control group and elevated the alkaline phosphatase (ALP) activity in a time-dependent manner. Meanwhile, the treatment of GSK-137647A decreased the adipogenic differentiation of BMSCs. The expression levels of ALP, runt-related transcription factor 2, bone morphogenetic protein 4, osterix and β-catenin were significantly increased in GSK-137647A-treated group, while the gene and protein levels of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α were significantly reduced. Conclusions: All of these results demonstrated that GSK-137647A suppressed the adipogenic differentiation and promoted osteogenic differentiation of BMSCs, which is partly attributed to the increased expression of β-catenin in wingless/integrated signalling pathway.
CITATION STYLE
Wang, C., Liu, Y., Pan, Y., & Jin, H. (2020). Effect of GSK-137647A, the first non-carboxylic FFA4 agonist, on the osteogenic and adipogenic differentiation of bone mesenchymal stem cells in db/db mice. Journal of Pharmacy and Pharmacology, 72(3), 461–469. https://doi.org/10.1111/jphp.13217
Mendeley helps you to discover research relevant for your work.