The observation of ocean wave parameters is necessary to improve forecasts of ocean wave conditions. In this paper, we investigate the viability of using a single GPS receiver to measure ocean-surface waves, and present a method to enhance the accuracy of the estimated wave parameters. The application of high-pass filtering to GPS data in conjunction with directional wave spectral theory is a core concept in this article. Laboratory experiments were conducted to test the viability and accuracy measurements of wave parameters made by a single GPS receiver buoy. These tests identified an error of less than 1% for the rotational arm measurement (wave height) and an error of 1% in verifications of the wave direction and wave period, and showed a 0.488 s bias; this is sufficiently accurate for many specific purposes. These results are based on the best cut-off frequency value derived in this study. A moored-sea GPS buoy on the Taiwanese coast was used to estimate the GPS-derived wave parameters. Our results indicate that data from a single GPS receiver, processed with the presented method to reduce the error of the estimated parameters, can provide measurements of ocean surface wave to reasonable accuracy.
CITATION STYLE
Joodaki, G., Nahavandchi, H., & Cheng, K. (2013). Ocean Wave Measurement Using GPS Buoys. Journal of Geodetic Science, 3(3), 163–172. https://doi.org/10.2478/jogs-2013-0023
Mendeley helps you to discover research relevant for your work.