Bus travel time prediction model based on profile similarity

20Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

In road-based mass transit systems, travel time is a key factor in providing quality of service. This article proposes a method of predicting travel time for this type of transport system. This method estimates travel time by taking into account its historical behaviour, represented by historical profiles, and the current behaviour recorded on the public transport vehicle for which the prediction is to be made. The model uses the k-medoids clustering algorithm to obtain historical travel time profiles. A relevant feature of the model is that it does not require recent travel time data from other vehicles. For this reason, the proposed model may be used in intercity transport contexts in which service planning is carried out according to timetables. The proposed model has been tested with two real cases of intercity public transport routes and from the results obtained we may conclude that, in general, the average error of the predictions is around 13% compared to the observed travel time values.

Cite

CITATION STYLE

APA

Cristóbal, T., Padrón, G., Quesada-Arencibia, A., Alayón, F., Blasio, G. D., & García, C. R. (2019). Bus travel time prediction model based on profile similarity. Sensors (Switzerland), 19(13). https://doi.org/10.3390/s19132869

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free